4 research outputs found

    A Heterogeneous and Multi-Range Soft-Tissue Deformation Model for Applications in Adaptive Radiotherapy

    Get PDF
    During fractionated radiotherapy, anatomical changes result in uncertainties in the applied dose distribution. With increasing steepness of applied dose gradients, the relevance of patient deformations increases. Especially in proton therapy, small anatomical changes in the order of millimeters can result in large range uncertainties and therefore in substantial deviations from the planned dose. To quantify the anatomical changes, deformation models are required. With upcoming MR-guidance, the soft-tissue deformations gain visibility, but so far only few soft-tissue models meeting the requirements of high-precision radiotherapy exist. Most state-of-the-art models either lack anatomical detail or exhibit long computation times. In this work, a fast soft-tissue deformation model is developed which is capable of considering tissue properties of heterogeneous tissue. The model is based on the chainmail (CM)-concept, which is improved by three basic features. For the first time, rotational degrees of freedom are introduced into the CM-concept to improve the characteristic deformation behavior. A novel concept for handling multiple deformation initiators is developed to cope with global deformation input. And finally, a concept for handling various shapes of deformation input is proposed to provide a high flexibility concerning the design of deformation input. To demonstrate the model flexibility, it was coupled to a kinematic skeleton model for the head and neck region, which provides anatomically correct deformation input for the bones. For exemplary patient CTs, the combined model was shown to be capable of generating artificially deformed CT images with realistic appearance. This was achieved for small-range deformations in the order of interfractional deformations, as well as for large-range deformations like an arms-up to arms-down deformation, as can occur between images of different modalities. The deformation results showed a strong improvement in biofidelity, compared to the original chainmail-concept, as well as compared to clinically used image-based deformation methods. The computation times for the model are in the order of 30 min for single-threaded calculations, by simple code parallelization times in the order of 1 min can be achieved. Applications that require realistic forward deformations of CT images will benefit from the improved biofidelity of the developed model. Envisioned applications are the generation of plan libraries and virtual phantoms, as well as data augmentation for deep learning approaches. Due to the low computation times, the model is also well suited for image registration applications. In this context, it will contribute to an improved calculation of accumulated dose, as is required in high-precision adaptive radiotherapy

    Tissue-specific transformation model for CT-images

    No full text
    During radiotherapy, posture changes and volume changing deformations like growing or shrinking tissue result in anatomical deformations. The basis for investigating the impact of such deformations on dose uncertainties, are model-based tools for deformation analysis. In this context, we propose a transformation model based on the information of CT-images, which allows an on-the-fly calculation of voxel volumes. Our model is based on the concept of the chainmail algorithm and describes deformation on voxel-level. With an exemplary input of a set of landmark pairs, generated by a kinematic head-and-neck skeleton model, CT-images (512x512x126 voxel) can be deformed with an on-the-fly volume calculation in less than 70s. The volume calculation delivers insight into model-characteristic volume changes and is a prerequisite for implementing tissue growth and shrinkage

    Handling images of patient postures in arms up and arms down position using a biomechanical skeleton model

    No full text
    Deformable image registration is gradually becoming the tool of choice for motion extraction during adaptive radiotherapy. Achieving a motion vector field that accurately represents the anatomical changes requires a tissue specific transformation model. Therefore, widely used spline based models most likely fail in appropriately reproducing large anatomical changes such as the arms of the patient being positioned up and down. We present the application of a tissue specific biomechanical model with the goal to mimic patient motion even in presence of large motion. Based on the planning CT, delineated bones are used to represent the rigid anatomy of the patient. We implement ball-and-socket joints between corresponding bones in order to achieve mobility of the skeleton. An inverse kinematics approach enables the propagation of motion between individual bones across their joints, leading to an articulated skeleton that can be controlled by feature points on one or more bones. The transformation of each bone initializes a chainmail based soft tissue model to also propagate the motion into the surrounding heterogeneous soft tissue. Representation of different postures like arms up and down can be achieved within less than 1 s for the skeleton and ∼10 s for the soft tissue. Especially for large anatomical changes, the kinematics approach benefits from the direct articulation at specific joints, considerably lowering the degrees of freedom for motion description. Being the input for the chainmail based soft tissue model, the transformed bones guarantee for its meaningful initialization. The proposed biomechanical skeleton model is promising to facilitate the registration of patients’ anatomy, being positioned with arms up and arms down. The results encourage further refinement of the joints and the soft tissue model
    corecore